
GRAPHZEPPELIN
EVAN WEST, STONY BROOK UNIVERSITY

PROCESSING ENORMOUS, CHANGING GRAPHS

GRADUATE RESEARCH DAY, 2022

GRAPHZEPPELIN
EVAN WEST, STONY BROOK UNIVERSITY

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-
SKETCHING MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND
EXTERNAL MEMORY DATA-STRUCTURES

GRADUATE RESEARCH DAY, 2022

GRAPHZEPPELIN
EVAN WEST, STONY BROOK UNIVERSITY

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-
SKETCHING MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND
EXTERNAL MEMORY DATA-STRUCTURES

GRADUATE RESEARCH DAY, 2022

GRAPHZEPPELIN AUTHORS

David Tench
Stony Brook University

Michael Bender
Stony Brook University

Abiyaz Chowdhury
Stony Brook University

Evan West
Stony Brook University

Martin Farach-Colton
Rutgers University

J. Ahmed Dellas
Rutgers University

Victor Zhang
Rutgers University

Kenny Zhang
Stony Brook University

Tyler Seip
MongoDB

Hi David! I’d like to do research
and use my coding skills

A group of us are implementing Ahn,
Guha, and McGregor’s algorithm
[SODA12] for the dynamic streaming
connected components problem.
It should be an easy publication …

TWO YEARS AGO . . .

TWO YEARS AGO . . .
This algorithm is useful! It can analyze
massive changing graphs even when they’re
bigger than RAM. So weird it hasn’t already
been implemented. It uses this really cool
technique called linear ske-

TWO YEARS AGO . . .
This algorithm is useful! It can analyze
massive changing graphs even when they’re
bigger than RAM. So weird it hasn’t already
been implemented. It uses this really cool
technique called linear ske-

David. You had me at easy publication

Oh yes. This algorithm uses
asymptotically smaller memory than
storing the entire graph. A straightforward
implementation will definitely outperform
state of the art systems.

TWO YEARS AGO . . .
This algorithm is useful! It can analyze
massive changing graphs even when they’re
bigger than RAM. So weird it hasn’t already
been implemented. It uses this really cool
technique called linear ske-

David. You had me at easy publication

Oh yes. This algorithm uses
asymptotically smaller memory than
storing the entire graph. A straightforward
implementation will definitely outperform
state of the art systems.

FORESHADOWING!

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-SKETCHING
MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND EXTERNAL
MEMORY DATA-STRUCTURES

Goal: Find connected components of a graph with nodes subject to stream of
edge insertions and deletions.

n

DYNAMIC STREAMING CONNECTED COMPONENTS

1 2

3

4 5

{{1}, {2}, {3}, {4}, {5}}
Initial State

Goal: Find connected components of a graph with nodes subject to stream of
edge insertions and deletions.

n

DYNAMIC STREAMING CONNECTED COMPONENTS

1 2

3

4 5

{{1}, {2}, {3}, {4}, {5}}
Initial State

1 2

3

4 5

{{1}, {2, 5}, {3}, {4}}
Insert Edge 2,5

Goal: Find connected components of a graph with nodes subject to stream of
edge insertions and deletions.

n

DYNAMIC STREAMING CONNECTED COMPONENTS

1 2

3

4 5

{{1}, {2}, {3}, {4}, {5}}
Initial State

1 2

3

4 5

{{1}, {2, 5}, {3}, {4}}
Insert Edge 2,5

1 2

3

4 5

{{1}, {2, 3, 5}, {4}}
Insert Edges 2,3 3,5

This edge is redundant for

defining the components

but we still need to store it.

Why?

Goal: Find connected components of a graph with nodes subject to stream of
edge insertions and deletions.

n

DYNAMIC STREAMING CONNECTED COMPONENTS

1 2

3

4 5

{{1}, {2}, {3}, {4}, {5}}
Initial State

1 2

3

4 5

{{1}, {2, 5}, {3}, {4}}
Insert Edge 2,5

1 2

3

4 5

{{1}, {2, 3, 5}, {4}}
Insert Edges 2,3 3,5

1 2

3

4 5

{{1}, {2, 3, 5}, {4}}
Delete Edge 2,3

To return the correct answer we

need to retain redundant edges

in case other edges are deleted

Goal: Find connected components of a graph with nodes subject to stream of
edge insertions and deletions.

Semi-Streaming constraint: space

n

O(n × polylog(n))

DYNAMIC STREAMING CONNECTED COMPONENTS

1 2

3

4 5

{{1}, {2}, {3}, {4}, {5}}
Initial State

1 2

3

4 5

{{1}, {2, 5}, {3}, {4}}
Insert Edge 2,5

1 2

3

4 5

{{1}, {2, 3, 5}, {4}}
Insert Edges 2,3 3,5

1 2

3

4 5

{{1}, {2, 3, 5}, {4}}
Delete Edge 2,3

To return the correct answer we

need to retain redundant edges

in case other edges are deleted

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-SKETCHING
MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND EXTERNAL
MEMORY DATA-STRUCTURES

Hi David! I’d like to do research
and use my coding skills

A group of us are implementing Ahn,
Guha, and McGregor’s algorithm
[SODA12] for the dynamic streaming
connected components problem.
It should be an easy publication …

Even though edge insertion/deletion
updates are received one by one in
stream order.

Compresses graph stream via linear
sketching to a size of only .
The graph may be much larger than this,
but the algorithm can still recover
connected components w.h.p.

 [Ahn, Guha, McGregor SODA 2012]

O(n log3 n)

AHN, GUHA, & MCGREGOR’S ALGORITHM: CONNECTIVITY IN SMALL SPACE

Compress stream

into sketches

Query CCs

IMPLEMENTATION TIME!

TO BOLDLY GO . . .

TO BOLDLY IMPLEMENT . . .

BOLDLY IMPLEMENTED . . . POORLY?

It’s too big!

It’s too slow!

Back of the envelope

math for graph on 1

billion nodes:

Before constants, roughly

25 TB of RAM.

109 log3(109) = 2.7 × 1013

MAKE SKETCHES SMALLER?

Let’s improve the asymptotic
space cost!

MAKE SKETCHES SMALLER?

Great idea Evan, I always knew
you’d finally contribute something
to this project.

Let’s improve the asymptotic
space cost!

MAKE SKETCHES SMALLER?

You cannot: Lower bound:
[Nelson & Yu, SODA 2019]

Ω(n log3 n)

Let’s improve the asymptotic
space cost!

CANNOT MAKE SKETCHES SMALLER
You cannot: Lower bound:
[Nelson & Yu, SODA 2019]

Ω(n log3 n)

For our purposes:
This might as well be infinite RAM

How can we overcome this
lower bound?

CANNOT MAKE SKETCHES SMALLER: MAKE THEM USEFUL ANYWAY

GraphZeppelin:
We built a system that solves dynamic
streaming connected components for
a critical use case.

To do this we designed an algorithm
which works well despite the space
lower bound.

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-SKETCHING
MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND EXTERNAL
MEMORY DATA-STRUCTURES

WHAT MAKES A STREAMING ALGORITHM “USEFUL”?

1. Can be run on
today’s hardware.

How can we overcome the
space lower bound?

WHAT MAKES A STREAMING ALGORITHM “USEFUL”?

1. Can be run on
today’s hardware.

How can we overcome the
space lower bound?

2. Keeps pace with
high-speed streams.

How can we achieve our
other goals while
remaining fast?

WHAT MAKES A STREAMING ALGORITHM “USEFUL”?

1. Can be run on
today’s hardware.

How can we overcome the
space lower bound?

2. Keeps pace with
high-speed streams.

How can we achieve our
other goals while
remaining fast?

3. Meets an unmet need

When are existing
systems for processing
graph streams unable to
find CCs?

WHAT MAKES A STREAMING ALGORITHM “USEFUL”?

1. Can be run on
today’s hardware.

How can we overcome the
space lower bound?

2. Keeps pace with
high-speed streams.

How can we achieve our
other goals while
remaining fast?

3. Meets an unmet need

When are existing
systems for processing
graph streams unable to
find CCs?

SPACE SPEED DENSITY

UNMET NEED: PROCESSING DENSE GRAPHS

Memory usage of semi-streaming algorithms scales with the number of
nodes, but not the number of edges .

Get the greatest gains when is large, i.e., graph is dense.

Folk wisdom: “Large dense graphs don’t exist in practice. Real-world
graphs are sparse.”

Other dynamic graph processing systems optimize for sparse graphs.
Aspen [Dhulipala, Blelloch, Shun 2019]
Terrace [Pandey, Wheatman, Xu, Buluç 2021]

n
E

E

UNMET NEED: PROCESSING DENSE GRAPHS

UNMET NEED: PROCESSING DENSE GRAPHS

Facebook works with large, dense graphs (40 million nodes and larger) since
at least 2015.
They do so at great cost on supercomputing clusters.
[Ching, Edunov, Kabiljo, Logothetic, Muthukrishnan VLDB 2015]

The folk wisdom is in fact observing a selection effect
We lack the tools to process large, dense graph streams so they are rarely
studied.

DENSITY

PROCESSING ENORMOUS, CHANGING GRAPHS WITH LINEAR-SKETCHING
MADE USEFUL VIA ALGORITHMIC IMPROVEMENTS AND EXTERNAL
MEMORY DATA-STRUCTURES

SKETCHES ARE TOO LARGE FOR MODERN HARDWARE: OR ARE THEY?

The problem:
• space is big actually. On top of

that sketches have huge constants. Easily
overflows RAM.

• Streams and sketches are random so data
out-of-core is EXTREMELY slow

O(n log3 n)

Compress stream

into sketches

Query CCs

SKETCHES ARE TOO LARGE FOR MODERN HARDWARE: OR ARE THEY?

Solve the space problem:
• GraphZeppelin uses a GutterTree to

efficiently buffer updates on disk.

• Buffering updates amortizes the cost of
accessing the disk.

• Still a space optimal connected components

Root Buffer

Edge Updates

Internal NodeInternal Node

. . .

.
⋮ ⋮

Leaf Node Leaf Node Leaf Node Leaf Node

Update Batches

. . .

SPACE

Compress batches

into sketches

The problem:
• space is big actually. On top of

that sketches have huge constants. Easily
overflows RAM.

• Streams and sketches are random,
 out-of-core is EXTREMELY slow

O(n log3 n)

EXTERNAL MEMORY ALGORITHMS

RAM

Fetching a block from disk into RAM
is expensive. Latency of disk is
much higher than that of RAM.

External memory algorithms: basic
idea is to delay accessing the disk
until we have a bunch of operations
that touch the same block.

Therefore, latency of disk is shared
(amortized) among all these
operations

SSD with standard
algorithms

EXTERNAL MEMORY ALGORITHMS

RAM

SSD with external
memory algorithms

Fetching a block from disk into RAM
is expensive. Latency of disk is
much higher than that of RAM.

External memory algorithms: basic
idea is to delay accessing the disk
until we have a bunch of operations
that touch the same block.

Therefore, latency of disk is shared
(amortized) among all these
operations

SSD with standard
algorithms

SKETCHES ARE TOO SLOW FOR MODERN HARDWARE

The problem:
• Linear-sketching algorithm by AGM uses

modular exponentiation
• Also requires 128 bit integers
• This is very, very slow

• For a graph on nodes update rate
is only 833 per second

106

Compress stream

into sketches

Query CCs

SKETCHES ARE TOO SLOW FOR MODERN HARDWARE: IMPROVE THEM!

SPEED The problem:
• Linear-sketching algorithm by AGM uses

modular exponentiation
• Also requires 128 bit integers
• This is very, very slow

• For a graph on nodes update rate
is only 833 per second

106

Compress stream

into sketches

Query CCs

CubeSketch:
• Linear-sketching algorithm for connected

components
• Updates times faster
• Uses 8 times less space

> 103

GRAPHZEPPELIN: C++ LINEAR-SKETCHING LIBRARY

GRAPHZEPPELIN: AVOIDING DATA EXPLOSION IN GRAPH STREAMS

Graf-Zeppelin, NOT the
Hindenburg, did not explode

GraphZeppelin: Solves streaming
connected components using CubeSketch.

Fast:
• 3-5 million updates/sec in RAM
• >2.5 million updates/sec on consumer SSD

Compact:
• Compresses >200 GB stream into 45 GB

sketch (node graph)218

SMALLER ON DENSE GRAPHS

State-of-the-art:
Aspen [Dhulipala, Blelloch, Shun 2019]
Terrace [Pandey, Wheatman, Xu, Buluç 2021]

More compact:
• Aspen is 2x larger than

GraphZeppelin
• Terrace is 10x larger than

GraphZeppelin

Trend will continue - GraphZeppelin
is asymptotically smaller:
vs

O(n log3 n)
O(n2)

FASTER ON DENSE GRAPHS

Faster:
On dense graphs* in RAM,
• GraphZeppelin is 2x faster than

Aspen
• GraphZeppelin is 30x faster than

Terrace

*Aspen and Terrace are very fast on
sparse graphs in RAM (10-50 million
edges/sec)

FAST ON SSD

QUESTIONS? PLEASE ASK!

MORE DETAILS . . .

DISTRIBUTED SKETCHING

• Overcome GraphZeppelin’s
CPU bottleneck by
distributing update work

• Sketching lets us avoid
communication bottleneck of
distributed graph systems

• Scale near-linearly until
system bottlenecked by
sequential RAM bandwidth

FUTURE WORK

• Improve query performance
Current query times are comparable to Aspen/Terrace, but likely can be
improved with a better algorithm.

• Support more graph algorithms
E.g., k-connectivity, correlation clustering, triangle counting, spectral
sparsification, minimum cut.

