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Hi David! I’d like to do research 
and use my coding skills

A group of us are implementing Ahn,  
Guha, and McGregor’s algorithm 
[SODA12] for the dynamic streaming 
connected components problem.  
It should be an easy publication …
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Goal: Find connected components of a graph with  nodes subject to stream of 
edge insertions and deletions.
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Goal: Find connected components of a graph with  nodes subject to stream of 
edge insertions and deletions.


Semi-Streaming constraint:  space

n

O(n × polylog(n))
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Even though edge insertion/deletion 
updates are received one by one in 
stream order.


Compresses graph stream via linear 
sketching to a size of only . 
The graph may be much larger than this, 
but the algorithm can still recover 
connected components w.h.p.


 [Ahn, Guha, McGregor SODA 2012]

O(n log3 n)

AHN, GUHA, & MCGREGOR’S ALGORITHM: CONNECTIVITY IN SMALL SPACE

Compress stream

into sketches

Query CCs



IMPLEMENTATION TIME!



TO BOLDLY GO . . .
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BOLDLY IMPLEMENTED . . . POORLY?

It’s too big!

It’s too slow!

Back of the envelope

math for graph on 1 

billion nodes:

  


Before constants, roughly

25 TB of RAM.

109 log3(109) = 2.7 × 1013
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CANNOT MAKE SKETCHES SMALLER
You cannot: Lower bound:  
[Nelson & Yu, SODA 2019]

Ω(n log3 n)

For our purposes: 
This might as well be infinite RAM 

How can we overcome this 
lower bound?



CANNOT MAKE SKETCHES SMALLER: MAKE THEM USEFUL ANYWAY

GraphZeppelin: 
We built a system that solves dynamic 
streaming connected components for 
a critical use case. 

To do this we designed an algorithm 
which works well despite the space 
lower bound.
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UNMET NEED: PROCESSING DENSE GRAPHS

Memory usage of semi-streaming algorithms scales with  the number of 
nodes, but not the number of edges . 

Get the greatest gains when  is large, i.e., graph is dense. 

Folk wisdom: “Large dense graphs don’t exist in practice. Real-world 
graphs are sparse.” 

Other dynamic graph processing systems optimize for sparse graphs. 
Aspen [Dhulipala, Blelloch, Shun 2019] 
Terrace [Pandey, Wheatman, Xu, Buluç 2021]

n
E

E
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UNMET NEED: PROCESSING DENSE GRAPHS

Facebook works with large, dense graphs (40 million nodes and larger) since 
at least 2015. 
They do so at great cost on supercomputing clusters. 
[Ching, Edunov, Kabiljo, Logothetic, Muthukrishnan VLDB 2015] 

The folk wisdom is in fact observing a selection effect 
We lack the tools to process large, dense graph streams so they are rarely 
studied. 

DENSITY
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SKETCHES ARE TOO LARGE FOR MODERN HARDWARE: OR ARE THEY?

The problem: 
•  space is big actually. On top of 

that sketches have huge constants. Easily 
overflows RAM. 

• Streams and sketches are random so data 
out-of-core is EXTREMELY slow

O(n log3 n)

Compress stream
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Query CCs



SKETCHES ARE TOO LARGE FOR MODERN HARDWARE: OR ARE THEY?

Solve the space problem: 
• GraphZeppelin uses a GutterTree to 

efficiently buffer updates on disk. 

• Buffering updates amortizes the cost of 
accessing the disk. 

• Still a space optimal connected components

Root Buffer

Edge Updates

Internal NodeInternal Node

. . .

. . . . . .
⋮ ⋮

Leaf Node Leaf Node Leaf Node Leaf Node

Update Batches

. . .

SPACE

Compress batches

into sketches

The problem: 
•  space is big actually. On top of 

that sketches have huge constants. Easily 
overflows RAM. 

• Streams and sketches are random,  
    out-of-core is EXTREMELY slow

O(n log3 n)



EXTERNAL MEMORY ALGORITHMS

RAM

Fetching a block from disk into RAM 
is expensive. Latency of disk is 
much higher than that of RAM. 

External memory algorithms: basic 
idea is to delay accessing the disk 
until we have a bunch of operations 
that touch the same block. 

Therefore, latency of disk is shared 
(amortized) among all these 
operations

SSD with standard 
algorithms
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SKETCHES ARE TOO SLOW FOR MODERN HARDWARE

The problem: 
• Linear-sketching algorithm by AGM uses 

modular exponentiation 
• Also requires 128 bit integers 
• This is very, very slow 

• For a graph on  nodes update rate 
is only 833 per second

106
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SKETCHES ARE TOO SLOW FOR MODERN HARDWARE: IMPROVE THEM!

SPEED The problem: 
• Linear-sketching algorithm by AGM uses 

modular exponentiation 
• Also requires 128 bit integers 
• This is very, very slow 

• For a graph on  nodes update rate 
is only 833 per second

106

Compress stream

into sketches

Query CCs

CubeSketch: 
• Linear-sketching algorithm for connected 

components 
• Updates  times faster 
• Uses 8 times less space

> 103



GRAPHZEPPELIN: C++ LINEAR-SKETCHING LIBRARY



GRAPHZEPPELIN: AVOIDING DATA EXPLOSION IN GRAPH STREAMS

Graf-Zeppelin, NOT the  
Hindenburg, did not explode

GraphZeppelin: Solves streaming 
connected components using CubeSketch. 

Fast: 
• 3-5 million updates/sec in RAM 
• >2.5 million updates/sec on consumer SSD 

Compact: 
• Compresses >200 GB stream into 45 GB 

sketch (  node graph)218



SMALLER ON DENSE GRAPHS

State-of-the-art: 
Aspen [Dhulipala, Blelloch, Shun 2019] 
Terrace [Pandey, Wheatman, Xu, Buluç 2021] 

More compact: 
• Aspen is 2x larger than 

GraphZeppelin 
• Terrace is 10x larger than 

GraphZeppelin 

Trend will continue - GraphZeppelin 
is asymptotically smaller:  
vs 

O(n log3 n)
O(n2)



FASTER ON DENSE GRAPHS

Faster: 
On dense graphs* in RAM, 
• GraphZeppelin is 2x faster than 

Aspen 
• GraphZeppelin is 30x faster than 

Terrace 

*Aspen and Terrace are very fast on 
sparse graphs in RAM (10-50 million 
edges/sec)



FAST ON SSD



QUESTIONS? PLEASE ASK!



MORE DETAILS . . .



DISTRIBUTED SKETCHING

• Overcome GraphZeppelin’s 
CPU bottleneck by 
distributing update work 

• Sketching lets us avoid 
communication bottleneck of 
distributed graph systems 

• Scale near-linearly until 
system bottlenecked by 
sequential RAM bandwidth



FUTURE WORK

• Improve query performance 
Current query times are comparable to Aspen/Terrace, but likely can be 
improved with a better algorithm. 

• Support more graph algorithms 
E.g., k-connectivity, correlation clustering, triangle counting, spectral 
sparsification, minimum cut.


