
Increment-and-Freeze
Every Cache, Everywhere, All of the Time

Michael Bender 
Stony Brook University

Evan West 
Stony Brook University

Bradley Kuszmaul

William Kuszmaul 
Massachusetts Institute  

of Technology

Daniel DeLayo 
Stony Brook University



The Paging Problem
Foundation

• Stream of page requests, e.g. ABACB

Slow Storage

Fast Memory 
Capacity k



• Stream of page requests, e.g. ABACB


• Pages held within slow storage and must be cached in 
fast memory to be served

• Fast Hit if page already cached, slow miss if not

Slow Storage

Fast Memory 
Capacity k

The Paging Problem
Foundation



• Stream of page requests, e.g. ABACB


• Pages held within slow storage and must be cached in 
fast memory to be served

• Fast Hit if page already cached, slow miss if not


• Algorithms for the paging problem make eviction 
decisions.  
Evicting the least recently used page is known 
solution Slow Storage

Fast Memory 
Capacity k

The Paging Problem
Foundation
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Review of LRU

• LRU orders pages as a stack with the most recently accessed pages on top 
and least recently accessed on bottom



LRU Hit-rate Curves



• LRU hit-rate curves give the hit rate of 
every cache size for a sequence of 
page requests


• Sequence of page requests generated  
by execution of some program

Simulating Caches with LRU-Hit Rate Curves

Image: [Druidi et al. 2015]



• The bigger the cache, the more 
expensive it is


• Misses are also expensive: user 
latency, server load

Got Cache Questions?
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Got Cache Questions?
LRU hit-rate curves answer them

• The bigger the cache, the more 
expensive it is


• Misses are also expensive: user 
latency, server load


• Reduce cost by shrinking cache size?


• Improve hit rate via small increase?

Minimal loss if little smaller

Big benefit if little bigger

Image: [Druidi et al. 2015]



More Questions
How is my cache heuristic behaving?

• Most caches do not actually use LRU


• e.g. Clock or ML heuristic approach
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How is my cache heuristic behaving?

• Most caches do not actually use LRU


• e.g. Clock or ML heuristic approach


• To what extent is our eviction heuristic 
helping as compared to LRU?


• Or is it hurting?

Outperforms here

Underperforms here

More Questions

Image: [Druidi et al. 2015]
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• 1970 Mattson et al. compute LRU Hit-rate 
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• 1970 Mattson et al. compute LRU Hit-rate 
Curve from the stack


•  time algorithm


• 1975, Bennett and Kruskal store the stack as 
an augmented binary tree with order statistics


•  time algorithm

• Best known RAM model complexity

O(n2)

O(n log n)
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Augmented Tree Algorithms
State of the Art



This talk, Hit-rate Curve Computation In:

• The external-memory model


•  I/Os


• Parallelism


•  span


•  work

sort(n) = O( n
B logM/B

n
B )

O(log2 n)

O(n log n)



Lack of Locality
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• Accesses to the LRU stack may be random


• Augmented tree:  cache misses per 
request


•  I/Os in total in EM model


• Time to compute hit-rate curve is 100x 
greater than running time of program

O(log n)

O(n log n)

Lack of Locality
A Fundamental Challenge
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Parallelism
Necessary for practical performance

• We want to keep pace with a cache that may be receiving requests from 
multiple processes or users


• Existing work “PARDA”: Achieves parallelism at cost of additional memory


•  Chunk up requests sequence and use multiple trees


• Perhaps not surprising, we need both parallelism and data locality

PARDA: [Niu et al. 2012]



Increment-and-Freeze



The Increment-and-Freeze Algorithm
LRU hit-rate curves with locality and parallelism

• Can surprisingly solve Hit-rate Curve without representing a LRU-stack


• Accesses to the stack are fundamentally random



The Increment-and-Freeze Algorithm
LRU hit-rate curves with locality and parallelism

• Can surprisingly solve Hit-rate Curve without representing a LRU-stack


• Accesses to the stack are fundamentally random


• Increment-and-Freeze uses a divide-and-conquer strategy to compute the 
stack depth of every request



Finding Stack Distances

• Initialize an Array  to all zeros. Indexed by 1


• When the algorithm concludes,  holds the stack distance of all  requests

A[n]

A n



• Initialize an Array  to all zeros. Indexed by 1


• When the algorithm concludes,  holds the stack distance of all  requests


• Stack distance: the number of unique requests between an occurrence of a 
page and its next occurrence.


• ABBBA: stack distance of first A is 2


• ABCDA: stack distance of first A is 4

A[n]

A n

Finding Stack Distances



Operations

• Increment-and-Freeze consists of two operations



Operations
Surprising Stuf

• Increment-and-Freeze consists of two operations


• Increment : Increment array values  by 


• Freeze(i): Freeze array value , prevent it from being incremented more

(i, j, r) [i, j) r

A[i]



Operations

• Increment-and-Freeze consists of two operations


• Increment : Increment array values  by 


• Freeze(i): Freeze array value , prevent it from being incremented more


• Goal: After processing all operations,  contains the stack distance of each 
request


• Trivial to construct hit-rate curve from stack distances

(i, j, r) [i, j) r

A[i]

A
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• Example: ABEBA
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Building Operations

• Each request  becomes  and 


• Example: ABEBA

j I(prev( j), j,1) F(prev( j))

0 0 0 0 0 Initialize

1 0 0 0 0 B: (0,2,1) (0)I F
2 1 0 0 0 E: (0,3,1) (0)I F

0 0 0 0 0 A: (0,1,1) (0)I F

2 2 1 0 0 B: (2,4,1) (2)I F
3 2 2 1 0 A: (1,5,1) (1)I F
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•  time because increments are expensive
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• Can merge neighboring increments that affect the same range
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Divide and Conquer Structure

•  time because increments are expensive


• Need to merge increment operations


• Can merge neighboring increments that affect the same range


• Partition procedure divides a range of request indices in half


• Operations are restricted to only affect their respective side of the partition


• One Increment may become two

O(n2)



Divide and Conquer Structure

• Divide-and-conquer performed via repeated partitions


• Even though Increments may split


•  operations per levelO(n)



• RAM model:  operations per level,  levels


•  time total

O(n) O(log n)
O(n log n)

Increment-and-Freeze Complexity
The base algorithm
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Increment-and-Freeze Complexity
The base algorithm

• RAM model:  operations per level,  levels


•  time total


• External memory model: Scan at each level,  I/Os


• PRAM model: single-threaded partition, subproblems in other threads, thus 
 span and  work

O(n) O(log n)
O(n log n)

O(
n
B

log n)

O(n) O(n log n)



Lightning Round



Theoretical Extensions
See the paper :)

• External Memory:   I/Ossort(n) = O(
n
B

logM/B
n
B

)



Theoretical Extensions
See the paper :)

• External Memory:   I/Os


• PRAM: Span , work 


• Cluster sum: cool application of parallel prefix sums

sort(n) = O(
n
B

logM/B
n
B

)

O(log2 n) O(n log n)



Implementation
See the paper x2 :)

• We implemented the base Increment-and-Freeze algorithm


• Highly optimized via a number of cool tricks


• Faster! Uses less memory!



Results
See the paper x3 :)

• Single-threaded 


• 9x faster than augmented tree


• 8x faster than splay tree


• Cuts a 13 hour computation 
down to only 12 minutes
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Conclusion

• Increment-and-Freeze


• Computing LRU hit-rate curves with data locality and parallelism


• Everyone operating a cache should have real-time telemetry


• This work has the potential to enable real-time cache analysis



More Slides



Operations
Example

• Request sequence: ABA


• A -> , 


• B -> , 


• A -> , 


• Full op sequence: , , , , , 

I(0,1,1) F(0)

I(0,2,1) F(0)

I(1,3,1) F(1)

I(0,1,1) F(0) I(0,2,1) F(0) I(1,3,1) F(1)



Sampling

• Efficient approaches for computing LRU hit-rate curves down sample the key 
space. No quality guarantees for curve


• If we are trying to understand why our paging heuristic is underperforming, 
sampling may hide the answer.


• Increment-and-Freeze composes with sampling, further improving 
performance



Lack of Locality
Why Hit-rate Curve Computation is 100x Slower

• Example: Building a hit rate curve for L3 
cache


• At most 1 cache miss per access when 
running executable


• Versus  cache misses per access 
when producing the hit-rate curve! 

O(log n)



Operations
Creating operations from requests

• : The index of the previous request that references the same page as 


• For example: ABCAC, 

prev( j) j

prev(4) = 1



Comparison with PARDA
Comparable speedup without memory cost


