
Increment-and-Freeze
Every Cache, Everywhere, All of the Time

Michael Bender
Stony Brook University

Evan West
Stony Brook University

Bradley Kuszmaul

William Kuszmaul
Massachusetts Institute

of Technology

Daniel DeLayo
Stony Brook University

The Paging Problem
Foundation

• Stream of page requests, e.g. ABACB

Slow Storage

Fast Memory
Capacity k

• Stream of page requests, e.g. ABACB

• Pages held within slow storage and must be cached in
fast memory to be served

• Fast Hit if page already cached, slow miss if not

Slow Storage

Fast Memory
Capacity k

The Paging Problem
Foundation

• Stream of page requests, e.g. ABACB

• Pages held within slow storage and must be cached in
fast memory to be served

• Fast Hit if page already cached, slow miss if not

• Algorithms for the paging problem make eviction
decisions.  
Evicting the least recently used page is known
solution Slow Storage

Fast Memory
Capacity k

The Paging Problem
Foundation

Getting on the Same Page
Review of LRU

• LRU orders pages as a stack with the most recently accessed pages on top
and least recently accessed on bottom

Getting on the Same Page
Review of LRU

A

C

B
BACAB

Hit!

B

A

C

• LRU orders pages as a stack with the most recently accessed pages on top
and least recently accessed on bottom

A

C

B
BACAB

Hit!

B

D

A
ABDBC

Miss!

B

A

C

C

B

D

Getting on the Same Page
Review of LRU

• LRU orders pages as a stack with the most recently accessed pages on top
and least recently accessed on bottom

LRU Hit-rate Curves

• LRU hit-rate curves give the hit rate of
every cache size for a sequence of
page requests

• Sequence of page requests generated
by execution of some program

Simulating Caches with LRU-Hit Rate Curves

Image: [Druidi et al. 2015]

• The bigger the cache, the more
expensive it is

• Misses are also expensive: user
latency, server load

Got Cache Questions?
LRU hit-rate curves answer them

Image: [Druidi et al. 2015]

• The bigger the cache, the more
expensive it is

• Misses are also expensive: user
latency, server load

• Reduce cost by shrinking cache size?
Minimal loss if little smaller

Got Cache Questions?
LRU hit-rate curves answer them

Image: [Druidi et al. 2015]

Got Cache Questions?
LRU hit-rate curves answer them

• The bigger the cache, the more
expensive it is

• Misses are also expensive: user
latency, server load

• Reduce cost by shrinking cache size?

• Improve hit rate via small increase?

Minimal loss if little smaller

Big benefit if little bigger

Image: [Druidi et al. 2015]

More Questions
How is my cache heuristic behaving?

• Most caches do not actually use LRU

• e.g. Clock or ML heuristic approach

Image: [Druidi et al. 2015]

How is my cache heuristic behaving?

• Most caches do not actually use LRU

• e.g. Clock or ML heuristic approach

More Questions

Image: [Druidi et al. 2015]

How is my cache heuristic behaving?

• Most caches do not actually use LRU

• e.g. Clock or ML heuristic approach

• To what extent is our eviction heuristic
helping as compared to LRU?

Outperforms here

More Questions

Image: [Druidi et al. 2015]

How is my cache heuristic behaving?

• Most caches do not actually use LRU

• e.g. Clock or ML heuristic approach

• To what extent is our eviction heuristic
helping as compared to LRU?

• Or is it hurting?

Outperforms here

Underperforms here

More Questions

Image: [Druidi et al. 2015]

Augmented Tree Algorithms
State of the Art

• 1970 Mattson et al. compute LRU Hit-rate
Curve from the stack

• time algorithmO(n2) B
G
C
D
F
A
E

LRU Stack

• 1970 Mattson et al. compute LRU Hit-rate
Curve from the stack

• time algorithm

• 1975, Bennett and Kruskal store the stack as
an augmented binary tree with order statistics

• time algorithm

• Best known RAM model complexity

O(n2)

O(n log n)

B
G
C
D
F
A
E

B

G

C

A

F

D

E

Augmented TreeLRU Stack

Augmented Tree Algorithms
State of the Art

This talk, Hit-rate Curve Computation In:

• The external-memory model

• I/Os

• Parallelism

• span

• work

sort(n) = O(n
B logM/B

n
B)

O(log2 n)

O(n log n)

Lack of Locality
A Fundamental Challenge

• Accesses to the LRU stack may be random

• Accesses to the LRU stack may be random

• Augmented tree: cache misses per
request

• I/Os in total in EM model

O(log n)

O(n log n)

Lack of Locality
A Fundamental Challenge

• Accesses to the LRU stack may be random

• Augmented tree: cache misses per
request

• I/Os in total in EM model

• Time to compute hit-rate curve is 100x
greater than running time of program

O(log n)

O(n log n)

Lack of Locality
A Fundamental Challenge

Parallelism

• We want to keep pace with a cache that may be receiving requests from
multiple processes or users

Necessary for practical performance

Parallelism

• We want to keep pace with a cache that may be receiving requests from
multiple processes or users

• Existing work “PARDA”: Achieves parallelism at cost of additional memory

• Chunk up requests sequence and use multiple trees

Necessary for practical performance

PARDA: [Niu et al. 2012]

Parallelism
Necessary for practical performance

• We want to keep pace with a cache that may be receiving requests from
multiple processes or users

• Existing work “PARDA”: Achieves parallelism at cost of additional memory

• Chunk up requests sequence and use multiple trees

• Perhaps not surprising, we need both parallelism and data locality

PARDA: [Niu et al. 2012]

Increment-and-Freeze

The Increment-and-Freeze Algorithm
LRU hit-rate curves with locality and parallelism

• Can surprisingly solve Hit-rate Curve without representing a LRU-stack

• Accesses to the stack are fundamentally random

The Increment-and-Freeze Algorithm
LRU hit-rate curves with locality and parallelism

• Can surprisingly solve Hit-rate Curve without representing a LRU-stack

• Accesses to the stack are fundamentally random

• Increment-and-Freeze uses a divide-and-conquer strategy to compute the
stack depth of every request

Finding Stack Distances

• Initialize an Array to all zeros. Indexed by 1

• When the algorithm concludes, holds the stack distance of all requests

A[n]

A n

• Initialize an Array to all zeros. Indexed by 1

• When the algorithm concludes, holds the stack distance of all requests

• Stack distance: the number of unique requests between an occurrence of a
page and its next occurrence.

• ABBBA: stack distance of first A is 2

• ABCDA: stack distance of first A is 4

A[n]

A n

Finding Stack Distances

Operations

• Increment-and-Freeze consists of two operations

Operations
Surprising Stuf

• Increment-and-Freeze consists of two operations

• Increment : Increment array values by

• Freeze(i): Freeze array value , prevent it from being incremented more

(i, j, r) [i, j) r

A[i]

Operations

• Increment-and-Freeze consists of two operations

• Increment : Increment array values by

• Freeze(i): Freeze array value , prevent it from being incremented more

• Goal: After processing all operations, contains the stack distance of each
request

• Trivial to construct hit-rate curve from stack distances

(i, j, r) [i, j) r

A[i]

A

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize
0 0 0 0 0 A: (0,1,1) (0)I F

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize

1 0 0 0 0 B: (0,2,1) (0)I F
0 0 0 0 0 A: (0,1,1) (0)I F

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize

1 0 0 0 0 B: (0,2,1) (0)I F
2 1 0 0 0 E: (0,3,1) (0)I F

0 0 0 0 0 A: (0,1,1) (0)I F

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize

1 0 0 0 0 B: (0,2,1) (0)I F
2 1 0 0 0 E: (0,3,1) (0)I F

0 0 0 0 0 A: (0,1,1) (0)I F

2 2 1 0 0 B: (2,4,1) (2)I F

Building Operations

• Each request becomes and

• Example: ABEBA

j I(prev(j), j,1) F(prev(j))

0 0 0 0 0 Initialize

1 0 0 0 0 B: (0,2,1) (0)I F
2 1 0 0 0 E: (0,3,1) (0)I F

0 0 0 0 0 A: (0,1,1) (0)I F

2 2 1 0 0 B: (2,4,1) (2)I F
3 2 2 1 0 A: (1,5,1) (1)I F

Divide and Conquer Structure

• time because increments are expensive

• Need to merge increment operations

• Can merge neighboring increments that affect the same range

O(n2)

Divide and Conquer Structure

• time because increments are expensive

• Need to merge increment operations

• Can merge neighboring increments that affect the same range

• Partition procedure divides a range of request indices in half

• Operations are restricted to only affect their respective side of the partition

• One Increment may become two

O(n2)

Divide and Conquer Structure

• Divide-and-conquer performed via repeated partitions

• Even though Increments may split

• operations per levelO(n)

• RAM model: operations per level, levels

• time total

O(n) O(log n)
O(n log n)

Increment-and-Freeze Complexity
The base algorithm

• RAM model: operations per level, levels

• time total

• External memory model: Scan at each level, I/Os

O(n) O(log n)
O(n log n)

O(
n
B

log n)

Increment-and-Freeze Complexity
The base algorithm

Increment-and-Freeze Complexity
The base algorithm

• RAM model: operations per level, levels

• time total

• External memory model: Scan at each level, I/Os

• PRAM model: single-threaded partition, subproblems in other threads, thus
 span and work

O(n) O(log n)
O(n log n)

O(
n
B

log n)

O(n) O(n log n)

Lightning Round

Theoretical Extensions
See the paper :)

• External Memory: I/Ossort(n) = O(
n
B

logM/B
n
B

)

Theoretical Extensions
See the paper :)

• External Memory: I/Os

• PRAM: Span , work

• Cluster sum: cool application of parallel prefix sums

sort(n) = O(
n
B

logM/B
n
B

)

O(log2 n) O(n log n)

Implementation
See the paper x2 :)

• We implemented the base Increment-and-Freeze algorithm

• Highly optimized via a number of cool tricks

• Faster! Uses less memory!

Results
See the paper x3 :)

• Single-threaded

• 9x faster than augmented tree

• 8x faster than splay tree

• Cuts a 13 hour computation
down to only 12 minutes

Re
qu

es
t T

hr
ou

gh
pu

t (
m

illi
on

s)
0.00

5.00

10.00

15.00

20.00

System
Augmented Tree PARDA - 16 threads IAF - 16 threads

Conclusion

• Increment-and-Freeze

• Computing LRU hit-rate curves with data locality and parallelism

• Everyone operating a cache should have real-time telemetry

• This work has the potential to enable real-time cache analysis

More Slides

Operations
Example

• Request sequence: ABA

• A -> ,

• B -> ,

• A -> ,

• Full op sequence: , , , , ,

I(0,1,1) F(0)

I(0,2,1) F(0)

I(1,3,1) F(1)

I(0,1,1) F(0) I(0,2,1) F(0) I(1,3,1) F(1)

Sampling

• Efficient approaches for computing LRU hit-rate curves down sample the key
space. No quality guarantees for curve

• If we are trying to understand why our paging heuristic is underperforming,
sampling may hide the answer.

• Increment-and-Freeze composes with sampling, further improving
performance

Lack of Locality
Why Hit-rate Curve Computation is 100x Slower

• Example: Building a hit rate curve for L3
cache

• At most 1 cache miss per access when
running executable

• Versus cache misses per access
when producing the hit-rate curve!

O(log n)

Operations
Creating operations from requests

• : The index of the previous request that references the same page as

• For example: ABCAC,

prev(j) j

prev(4) = 1

Comparison with PARDA
Comparable speedup without memory cost

