
THEME ARTICLE: TOP PICKS FROM THE 2023 COMPUTER
ARCHITECTURE CONFERENCES

Mosaic Pages: Big TLB Reach With
Small Pages
Jaehyun Han , The University of North Carolina, Chapel Hill, NC, 27599, USA

Krishnan Gosakan , AMD, Bengaluru, 560048, India

William Kuszmaul , Harvard University, Cambridge, MA, 02134, USA

Ibrahim N. Mubarek and Nirjhar Mukherjee , Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Karthik Sriram , Yale University, New Haven, CT, 06511, USA

Guido Tagliavini , Snowflake, San Mateo, CA, 99402, USA

Evan West and Michael A. Bender , Stony Brook University, Stony Brook, NY, 11794, USA

Abhishek Bhattacharjee , Yale University, New Haven, CT, 06511, USA

Alex Conway , Cornell Tech, New York, NY, 10044, USA

Mart!ın Farach-Colton , New York University, New York, NY, 11201, USA

Jayneel Gandhi , Meta, Menlo Park, CA, 94025, USA

Rob Johnson , VMware Research, Palo Alto, CA, 94304, USA

Sudarsun Kannan , Rutgers University, Piscataway, NJ, 08854, USA

Donald E. Porter , The University of North Carolina, Chapel Hill, NC, 27599, USA

This article introduces mosaic pages, which increase translation lookaside buffer (TLB)
reach by compressing multiple, discrete translations into one TLB entry. Mosaic
leverages virtual contiguity for locality, but does not use physical contiguity. Mosaic
relies on recent advances in hashing theory to constrain memory mappings, in order
to realize this physical address compression without reducing memory utilization or
increasing swapping. Mosaic reduces TLB misses in several workloads by 6%–81%. Our
results show that Mosaic ’s constraints on memory mappings do not harm performance,
we never see conflicts before memory is 98% full in our experiments—at which point a
traditional design would also likely swap. Timing and area analyses on a commercial
28-nm CMOS process indicate that the hashing required on the critical path can run at
amaximum frequency of 4 GHz, indicating that a Mosaic TLB is unlikely to affect clock
frequency.

Data-hungry applications, such as data and
graph analytics, are often bottlenecked on the
translation lookaside buffer (TLB). A typical

TLB can cache only a relatively small number of
address translations—often caching fewer translations
than the working sets of these applications. For exam-
ple, the data-intensive Graph500 benchmark, when
running a breadth first search on a tree with over 220

nodes, has an approximate working set size of 215 MiB,
whereas a typical TLB using 4 KiB pages can cache
translations for only about 8.6 MiB of physical memory

0272-1732 © 2024 IEEE
Digital Object Identifier 10.1109/MM.2024.3409181
Date of publication 6 June 2024; date of current version
14 August 2024.

52 IEEE Micro Published by the IEEE Computer Society July/August 2024

https://orcid.org/0000-0002-6052-7889
https://orcid.org/0000-0002-9900-7522
https://orcid.org/0000-0002-3855-3036
https://orcid.org/0000-0001-7844-8022
https://orcid.org/0000-0002-3327-8442
https://orcid.org/0000-0002-2387-7732
https://orcid.org/0000-0001-8493-1395
https://orcid.org/0000-0002-5974-7745
https://orcid.org/0000-0001-7639-530X
https://orcid.org/0000-0003-2742-2679
https://orcid.org/0000-0003-4890-7413
https://orcid.org/0000-0003-3616-7788
https://orcid.org/0000-0003-1696-400X
https://orcid.org/0000-0002-0784-7410
https://orcid.org/0000-0003-4009-8586
https://orcid.org/0000-0002-9804-0857


at once. As a result, many modern applications report
20%–30% overhead attributable to TLB misses4,6,9 and
some as high as 83%.1

Given the challenges of building larger TLBs that
meet tight CPU cycle times, a primary family of techni-
ques to increase TLB reach leverage physical contiguity,
including the use of huge pages, segments, and oppor-
tunistic coalescing of contiguous entries. The downside
of relying on physical contiguity is that defragmenting
physical memory is expensive and has no good solutions
in the worst case—so much so that defragmentation
can overwhelm any performance gains from greater TLB
reach. For instance, Zhu et al.10 recently report that a
cold cache Redis workload shows a 29% throughput
gain on Linux when switching from 4 KiB pages to trans-
parent 2 MiB pages—with no fragmentation; when
memory is 50% fragmented on Linux, however, through-
put with 2 MiB pages drops to only 89% of the through-
put with 4 KiB pages. Other proposals accommodate
limited amounts of discontiguity or “holes” in contiguous
ranges,7,8 but the performance gains are the result of
the residual physical contiguity in themappings.

This article introduces mosaic pages, a technique
for increasing TLB reach without using physical conti-
guity. Without the need for physical contiguity, one
need not defragment memory. To demonstrate the fea-
sibility and capabilities of mosaic pages, we present
Mosaic, an end-to-end redesign of address translation
mechanisms across the hardware TLBs and the OS.
Mosaic internally uses the recently developed Iceberg
hashing3 for physical address compression and miti-
gating TLB conflicts. This article is based on our
ASPLOS ’23 paper.5

PHYSICAL ADDRESS
COMPRESSION

The key idea behind mosaic pages is to compress
each address translation, so that multiple, virtually
contiguous translations fit into a single TLB entry,
illustrated in Figure 1. We achieve our compression
by restricting each virtual address to map to only a
small number h of physical page frames (via hash-
ing), so that a virtual page’s physical address can be
encoded using only log h bits. For concreteness, we
set h¼ 104 in our experiments, which means we
encode each translation in seven bits. In contrast,
conventional virtual memory systems allow each vir-
tual page to be mapped to (almost) any of the p
physical page frames, requiring log p bits per address.
We call one of these h discrete translations to a page
frame a compressed physical frame number (CPFN).

By compressing translations, we can pack translations
for several contiguous virtual pages into a single TLB
entry, expanding TLB reach by log p=log h without
increasing the number of TLB entries. This article shows
that we can increase reach by at least a factor of four
using current TLB sizes.

Like huge pages, mosaic pages leverage virtual con-
tiguity, but, unlike huge pages, do not require physical
contiguity. In our design, each TLB subentry can be
mapped independently.

MITIGATING CONFLICTS
The concern with reducing h is that it increases con-
flicts in mapping virtual addresses to physical pages,
and resolving these conflicts has a cost. Specifically,
when mapping a new virtual page, we may find that its
h-allowed locations are already occupied by hot pages.
In this case, the conflict must be resolved, e.g., by
swapping a conflicting page to disk. In any scheme
that restricts mappings, the concern is forcing the
eviction of a hotter page than an unconstrained map-
ping would. Smaller h decreases the size of TLB encod-
ings but increases the chance of making a poor
eviction choice during conflicts. This article shows
that it is possible to have a small h with comparable
swapping costs.

OUR CONTRIBUTIONS
This article contributes an end-to-end system co-
design and implementation of mosaic pages, from the

FIGURE 1. The top illustrates a traditional TLB mapping virtual

addresses to physical page frames. Four contiguous virtual pages

map to different physical addresses. The bottom depicts how a

Mosaic TLB compresses the same pages into one entry, storing

only the bucket and offset for each page.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

July/August 2024 IEEE Micro 53



architecture to the OS. We implement the TLB changes
in the gem5 simulator and modify Linux to implement
mosaic for anonymous, unshared pages.

Using this experimental infrastructure, we demon-
strate that mosaic can indeed reduce TLB misses of
real-world workloads, such as Graph500, by 6%–81% in
simulation with comparable TLB entry width as a current
x86 chip.

Second, we contribute an implementation of our
hashing scheme for the TLB in Verilog and measure it
with a 28 nm commercial CMOS process. The timing
analysis yields a maximum clock frequency of 4 GHz,
indicating that the hashing we add to the critical path
is unlikely to harm overall clock frequency or have
significant area cost.

Finally, the article demonstrates empirically that,
under memory pressure, mosaic ’s swapping is compara-
ble to an unconstrained pagemapping. Our experiments
show that commensurate with Iceberg’s probabilistic
bounds, as long as only 2% of memory is held in reserve
and the application(s) fit into DRAM, conflicts are not
observed. We find that the system swaps only after
memory is over 98% utilized—similar to unmodified
Linux swapping once memory is fully utilized. Once
memory is over-subscribed, mosaic typically swaps less
than default Linux.

MOSAIC PAGES
A mosaic page is a large virtual page, composed of a
virtually consecutive, but not necessarily physically
contiguous, base pages (4 KiB). We say that a is the
arity of a mosaic page. The key idea is to compress
each translation such that translations for all a base
pages fit in one TLB entry, as illustrated in Figure 2.
Although the frames are allocated independently, we
will ensure that each page’s location can be encoded
with just a few bits of information—these bits are
known as the CPFN of the page. The TLB is indexed by
mosaic virtual page number (MVPN) (or the aligned,
virtual address of the mosaic page), and each entry in
the TLB holds a series of CPFNs for each virtual page in
that mosaic page. Together, we call these CPFNs the
table of contents (ToC) for the mosaic page.

A TLB lookup for a virtual address returns the ToC
for the relevant mosaic page. The base page offset
within the mosaic page (or mosaic offset) then deter-
mines which entry in the ToC corresponds to the
desired virtual page. The CPU then uses the CPFN to
compute the page’s actual page frame number (PFN).

Mosaic pages increase the reach of the TLB by a
factor of a by leveraging virtual locality. For example,

consider current x86 TLBs, which use 36-bit physical
frame numbers. If we use 8-bit CPFNs, then we can fit
a¼ 4 CPFNs in a single TLB entry, increasing TLB reach
by a factor of 4. Furthermore, there is good reason to
believe that we can actually increase the width of TLB
entries without incurring too much cost in terms of
power or chip area, so a future production implementa-
tion might have a¼ 16 or even larger.

Mosaic page tables map MVPNs to ToCs. Mosaic
can use any page-table structure, such as radix trees
or hash tables.

Compressed Physical Frame Numbers
The key to compressing PFNs is that whenever we
need to allocate a physical frame for virtual address v,
we limit ourselves to a small set of possible frames (h;
for concreteness, h¼ 104 in our experiments). We use
the term associativity to describe these limits on the
number of frames that can map a given 4-KiB base
page. Thus, the CPFN needs to indicate only which of
the h options was chosen by the page allocator.

Our page allocator treats the frames in physical
memory as slots in a hash table, in which slots are
grouped into buckets. Each VPN is mapped to one or
more buckets via a hashing scheme, and the CPFN
records which bucket and which slot within that
bucket were chosen by the allocator.

Note that this contrasts with conventional virtual
memory schemes, in which every virtual page can be
mapped to any physical frame. Thus, conventional

FIGURE 2. High-level design of mosaic address translation.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

54 IEEE Micro July/August 2024



virtual memory schemes are fully associative, whereas
mosaic is a low-associativity virtual memory scheme.

Low-Associativity Page Allocation with
Hashing
The hashing scheme we use in our page allocation
schememust meet three criteria as follows:

1) Low Hashing Associativity: For each item (i.e.,
virtual address) the set of possible positions
where the item could reside in the hash table is
less than or equal to a small h.

2) Stability: Once an item is inserted into the hash
table, it is not moved until a future deletion
removes it. This implies that once mapped,
pages never need to be copied within memory
to ensure good performance, whereas schemes
like cuckooing must migrate elements to main-
tain performance.

3) High Utilization: If p is the total number of slots
in the hash table (i.e., the total number of phys-
ical frames), then the hash table can handle up
to ð1# dÞp elements at a time for some small d
(d% :02 in our experiments). Practically speak-
ing, this means that nearly all of the memory
can be allocated (98% in our experiments)
before seeing conflicts, with extremely high
probability.

Mosaic allocates pages by using Iceberg hashing,3

a recently proposed hashing scheme that achieves the
aforementioned three criteria simultaneously, which
had long been an open problem in hash-table design.
Many classical hash tables meet two of the three.

An Iceberg hash table consists of two components:
a front yard and a (much smaller) backyard, illustrated
in Figure 2. The front yard is broken into s buckets of
some fixed size f ¼ xðlog log pÞ [e.g., f ¼Hðlog2 log pÞ].
The backyard also consists of s buckets, each with
capacity b¼Hðlog log pÞ, where p is the total number
of slots in the hash table (i.e., the total number of
frames in physical memory). For example, for 64-bit sys-
tems, log log p% 5:7, so a reasonable choice would be
front yard buckets of size 5:72 % 32 (or larger) and back-
yard buckets of size% 5:7 (or larger).

When an item x is inserted, it first hashes to some
bucket h0ðxÞ in the front yard. If there is a free slot in
h0ðxÞ, then the insertion uses that slot. Otherwise, if
bucket h0ðxÞ is full, then x is placed into the backyard.
Elements in the backyard are assigned a bucket using
the power of d choices: the element hashes to d bins
h1ðxÞ, :::,hdðxÞ and is placed in the emptiest of those
buckets.

EVALUATION
Mosaic Prototype
Our prototype implementation consists of three parts,
mosaic TLB on gem5 full system simulator, mosaic
page management in Linux, and hash function imple-
mentation in hardware. We use front yard buckets of
size f ¼ 56, backyard buckets of size b¼ 8, and d¼ 6

choices of backyards. Thus, the total associativity of
the page allocation scheme is 56þ 8' 6¼ 104. We
encode CPFNs into 7 bits.

Does Mosaic Reduce TLB Misses?
We evaluate TLB behavior in gem5, varying the TLB in
two dimensions. First, we vary the mosaic arity from 4
to 64, i.e., we vary the size of mosaic pages from 16 KiB
to 256 KiB. Second, we vary the associativity of the TLB
from direct-mapped to fully associative. Our ASPLOS
’23 paper describes these experimental parameters
and results in more detail.5

To study the TLB performance of Mosaic compared
to a standard “vanilla” TLB, we run four widely used
workloads, Graph500, BTree, GUPS, and XSBench using
full system gem5 hardware simulation.

Mosaic pages can reduce TLB misses across a wide
variety of workloads and TLB associativities. In many
cases, Mosaic can reduce TLB misses by a dramatic
amount, e.g., almost completely eliminating them in
Graph500 and XSBench, reducing them by up to about
half in B-Tree and about a quarter in GUPS. When one
considers sensitivity to arity, even with an arity of only
4 (Mosaic –4), Mosaic shows a substantial reduction of
6%–81% in TLB misses for Graph500, BTree, and
XSBench workloads, and with an arity of 64 (Mosaic
–64) reduces misses by 11%–98%. With an arity of 4, all
CPFNs fit in a single unmodified x86 TLB entry. In terms
of varying associativity, the results show that transi-
tioning from a standard TLB to a mosaic TLB reduces
TLB misses even further. For instance, a direct-mapped
Mosaic –8 TLB outperforms a fully associative vanilla
TLB in Graph500, BTree, and XSBench benchmarks.
The results show that a Mosaic system could leverage
more efficient, lower-associativity TLB designs.

Does Mosaic Reduce Memory
Utilization?
We empirically measure the memory overhead, d,
caused by associativity conflict, and compare this to
the memory utilization achieved by the default Linux
virtual memory subsystem. Mosaic starts to have
associativity conflicts once it hits a memory utilization
of 1# d. However, memory utilization can go beyond
1# d due to ghost pages. To evaluate these two

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

July/August 2024 IEEE Micro 55



effects, we measure both the memory utilization when
our benchmark experiences its first associativity con-
flict and its steady-state memory utilization over the
entire benchmark run.

In Mosaic, the first conflict appears at around
98.03% utilization across all workloads, indicating that d
is roughly 2%. In contrast, we observed that vanilla
Linux began swapping oncememory utilization reached
99.2% with the same configuration. Thus, Mosaic ’s
associativity restrictions do not cause Mosaic to begin
swapping significantly sooner than with the default
Linux allocator. Furthermore, over the entire execution,
the workloads are able to utilize most of the available
memory, and the overall memory overhead of Mosaic is
less than 1%.

Does Mosaic Increase Swapping?
We run each workload with various memory footprints,
from just over the size of available memory to about
57% larger and report the total number of swap
inputs/outputs as reported by sysstat. When the work-
load slightly exceeds available memory, Mosaic swaps
more than the default Linux allocator since Linux can
utilize about 1% more memory than Mosaic. However,
beyond this, Mosaic matches or surpasses Linux perfor-
mance, sometimes by up to 29% in the best case. This
may be because the associativity restrictions in Mosaic
slightly perturb LRU’s decisions, preventing the impact
from known issues like cyclic memory references.

Is the Hardware Feasible?
We implemented our hardware changes in System Veri-
log and synthesized it using a commercial 28-nm CMOS
process. We implemented the static tables as registers,
and used Cadence synthesis tools with standard cell
libraries to generate results. The synthesized circuit ran
at a maximum frequency of 4 GHz and a latency of 220
ps and 20 ps positive slack. Additionally, increasing the
number of hash functions did not increase the latency
while increasing the areaminimally.

DISCUSSION
This section explores the impact of some of Mosaic ’s
design choices.

Overlapping Versus Nonoverlapping
Set Associativity
One lesson from Iceberg hashing is that, when reduc-
ing associativity, one can get better utilization with
overlapping sets. In a traditional set-associative cache
design, a given cache line maps to precisely one set,
but the line may be placed in any way within that set.

We call this a nonoverlapping reduced associativity
strategy. A well-understood failure mode for this
approach is when frequently accessed memory loca-
tions are not evenly distributed across the sets, leading
to under-utilization; in other words, with n-way set
associativity, one can end up with nþ 1 hot lines in the
same set, causing associativity conflicts. In practice,
one may employ software-level strategies, such as
page coloring, to ensure that frequently accessedmem-
ory locations are evenly distributed across the sets.

A contribution of Iceberg hashing is a way to
reduce associativity with good load balancing across
the Iceberg buckets (i.e., the rough analog of sets in
Mosaic). A key enabler of Iceberg’s load balancing is
that the buckets are overlapping for any given virtual
address. Although Mosaic partitions physical memory
at boot time into buckets, the mapping for any given
virtual address spans multiple sets. So, for any group of
nþ 1 “hot” virtual addresses, each address can be
mapped to multiple pages in different sets/buckets,
avoiding associativity pathologies.

We present a study where we replace the Iceberg
hash scheme with a simple set-associative page map-
ping scheme. Each page maps onto a set with an
increasing number of ways, using the least significant
bits of the virtual page number to select the set. We
measure XSBench workload with sizes of 40 MiB (A),
400 MiB (B), and 4,200 MiB (C). One hundred twenty-
eight ways can be represented in the same number of
bits as Iceberg’s 104 choices.

Figure 3 shows that Mosaic’s Iceberg hashing gives
higher utilization for nearly all scenarios, except for the
largest workload (C) with the largest set (128-way). This
result illustrates that one is likely to get better empiri-
cal results with overlapping partition schemes. More-
over, Mosaic reduces the need for the application

FIGURE 3. Memory utilization comparison (higher is better)

between Iceberg hashing and traditional set-associative

schemes with increasing numbers of ways.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

56 IEEE Micro July/August 2024



writer to work around associativity conflicts with tech-
niques such as cache coloring.

LRU Precision
The original theory paper that described Iceberg2 ana-
lyzed the impact on swapping using a page-eviction
algorithm called Iceberg LRU. Iceberg LRU evicts pages
before memory is full in order to preserve invariants, in
particular, that the oldest page is always evicted, even
if it does not free a useful memory location. For our
parameter regime, Iceberg LRU keeps 13% of memory
free to ensure the oldest page is evicted and that there
is a slot free for each new page. Unfortunately, it is gen-
erally undesirable to swap pages before memory is
(nearly) full, since most use cases are careful to avoid
induced swapping by staying within the system’s mem-
ory capacity.

A first optimization of Iceberg LRU is to mark the
pages it wishes to evict as evictable, but only perform
the eviction when space needs to be made for a page.
This partially solves the issue, but keeping a large per-
centage of pages evictable at all times results in bad
evictions and a high rate of swapping (this strategy is
shown in red in Figure 4).

To address this issue, Mosaic uses Horizon LRU in
which pages are marked evictable if they are older
than the horizon. If an eviction must be performed, and
none of the eligible pages are evictable, then the

horizon is advanced to the oldest eligible page. Unlike
performing evictions lazily, this change is a notable
departure from the Iceberg theory. So, how does Horizon
LRU perform as compared to fully associative (i.e.,
Global) LRU and Iceberg LRU? We note that, of course,
LRU implementations are imprecise by nature—typically
sampling accessed bits in page tables, so swapping
schemes already tolerate some imprecision.

To understand this tradeoff between LRU precision
and overly eager swapping and to apply maximum
pressure to Horizon LRU, we model a workload allocat-
ing unique virtual addresses without reuse. The results
(for a memory size of 217 pages) are shown in Figure 4.
They indicate that Horizon LRU does worsen the
worst-case behavior at first (blue points above the
bound of 13% oldest), but the system reaches a steady
state when nearly all points are under this line. More-
over, Horizon LRU makes better swapping choices on
average, at the cost of some noise from outliers. In our
other experiments, this improved average case perfor-
mance results in less swapping.

CONCLUSION
This article shows how one can compress physical
addresses in the TLB, thereby reducing TLB misses for
big data workloads by 6%–81% with comparable hard-
ware, and even further with wider TLB entries. Many
techniques for increasing TLB reach rely on physical
contiguity, whereas Mosaic does not require contiguity
or defragmentation. Moreover, we show that these
constrained mappings do not induce additional swap-
ping on average. Key to these results is a hashing
scheme with the right properties for address transla-
tion: a high load factor, stability, and relatively few
choices. Finally, mosaic pages are compatible with
other techniques, such as huge pages, because any
base page size can bemapped by TLB sub-entries.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful
comments on prior drafts of the work. We thank Mon-
tek Singh for assistance with the Verilog/FPGA tool-
chain. We thank Rajit Manohar for giving us access to
the physical synthesis flow used for our hardware
evaluations. Part of this work was completed while
Mubarek and Mukherjee were at The University of
North Carolina; Gosakan, Tagliavini, and Farach-Colton
were at Rutgers; Kuszmaul was at The Massachusetts
Institute of Technology; and Conway and Gandhi were
at VMware Research. This work was supported in part
by NSF Grants CNS-1700512, CCF-1716252, CCF-1725543,

FIGURE 4. Comparison of page eviction choices under Ice-

berg LRU (red) and Horizon LRU (blue). The x axis shows evic-

tion decisions over time, and the y axis shows the relative age

of the eviction (lower is better). The lines indicate average

relative age (and points indicate maximum relative age) over

the last 1000 evictions.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

July/August 2024 IEEE Micro 57



CSR-1763680, CNS-1910593, CCF-1916817, CNS-1938709,
CSR-1938180, CCF-2106827, CCF-2106999, CCF-2118620,
CCF-2118830, CCF-2118832, CCF-2118851, CCF-2119300,
CNS-2154771, CNS-2231724, CCF-2247577, as well as an
NSF GRFP fellowship and a Fannie and John Hertz
Fellowship. This research was also partially spon-
sored by the United States Air Force Research
Laboratory and the United States Air Force Artifi-
cial Intelligence Accelerator and was accomplished
under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the United States Air
Force or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright
notation herein.

REFERENCES
1. A. Basu, J. Gandhi, J. Chang, M. D. Hill, and

M. M. Swift, “Efficient virtual memory for big memory
servers,” in Proc. 40th Annu. Int. Symp. Comput.

Archit. (ISCA), New York, NY, USA: ACM, Jun. 2013,
pp. 237–248.

2. M. A. Bender et al., “Paging and the address-
translation problem,” in Proc. 33rd ACM Symp.

Parallelism Algorithms Archit. (SPAA), 2021,
pp. 105–117, doi: 10.1145/3409964.3461814.

3. M. A. Bender, A. Conway, M. Farach-Colton,
W. Kuszmaul, and G. Tagliavini, “Iceberg hashing:
Optimizing many hash-table criteria at once,” J. ACM,
vol. 70, no. 6, pp. 1–51, 2023, doi: 10.1145/3625817.

4. M. Gorman. “Linux huge pages.” lwn.net. Accessed:
May 31, 2024. [Online]. Available: https://lwn.net/
Articles/375096/

5. K. Gosakan et al., “Mosaic pages: Big TLB reach with
small pages,” in Proc. 28th ACM Int. Conf. Archit.
Support Program. Lang. Operating Syst. (ASPLOS),
New York, NY, USA: ACM, 2023, pp. 433–448, doi:
10.1145/3582016.3582021.

6. Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and
E. Witchel, “Coordinated and efficient huge page
management with Ingens,” in Proc. 12th USENIX Conf.
Operating Syst. Design Implementation (OSDI), Nov.
2016, pp. 705–721.

7. C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-
Schaffer, and J. Huh, “Perforated page: Supporting
fragmented memory allocation for large pages,” in
Proc. ACM/IEEE 47th Annu. Int. Symp. Comput.
Archit. (ISCA), 2020, pp. 913–925, doi: 10.1109/
ISCA45697.2020.00079.

8. M. Swanson, L. Stoller, and J. Carter, “Increasing TLB

reach using superpages backed by shadow memory,”
in Proc. 25th Annu. Int. Sym. Comput. Archit. (ISCA),
1998, pp. 204–213.

9. M. M. Swift, “Towards Oð1Þ memory,” in Proc. 16th

Workshop Hot Topics Operating Syst. (HotOS), New

York, NY, USA: ACM, 2017, pp. 7–11.
10. W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive

analysis of superpage management mechanisms and
policies,” in Proc. USENIX Conf. Usenix Annu. Tech.

Conf. (USENIX ATC), 2020, pp. 829–842.

JAEHYUN HAN is a Ph.D. candidate at The University of

North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

His research interests include operating systems, architec-

ture, and security. Han received his M.S. degree in computer

science from Seoul National University. Contact him at

jaehyun@cs.unc.edu.

KRISHNAN GOSAKAN is a software engineer at AMD,

Bengaluru, 560048, India. His research interests include com-

puter systems, compilers, and security. Gosakan received his

B.Tech. degree in information technology from Sri Sivasubra-

maniya Nadar College of Engineering. Contact him at

krishnan.gosakan@gmail.com.

WILLIAM KUSZMAUL is a postdoctoral fellow at Harvard

University, Cambridge, MA, 02134, USA. His research inter-

ests include algorithms, data structures, and randomization.

Kuszmaul received his Ph.D. degree in computer science

from the Massachusetts Institute of Technology. Contact

him at williamkuszmaul@gmail.com.

IBRAHIM N. MUBAREK is an M.S. student at Carnegie

Mellon University, Pittsburgh, PA, 15213, USA. His research

interests include operating systems, computer architecture,

and storage systems. Mubarek received his B.S. degree in

computer science and his B.A. degree in mathematics from

the University of North Carolina at Chapel Hill. Contact him

at imubarek@alumni.cmu.edu.

NIRJHAR MUKHERJEE is a Ph.D. student at Carnegie Mellon

University, Pittsburgh, PA, 15213, USA. His research interests

include computational storages. Mukherjee received his B.S.

degree in computer science from the University of North

Carolina at Chapel Hill. Contact him at nirjhar@cmu.edu.

KARTHIK SRIRAM is a graduate software engineer at AMD,

Santa Clara, CA, 95054, USA. His research interests include

computer systems and architecture, and hardware–software

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

58 IEEE Micro July/August 2024

http://dx.doi.org/10.1145/3409964.3461814
http://dx.doi.org/10.1145/3625817
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
http://dx.doi.org/10.1145/3582016.3582021
http://dx.doi.org/10.1109/ISCA45697.2020.00079
http://dx.doi.org/10.1109/ISCA45697.2020.00079
mailto:jaehyun@cs.unc.edu
mailto:krishnan.gosakan@gmail.com
mailto:williamkuszmaul@gmail.com
mailto:imubarek@alumni.cmu.edu
mailto:nirjhar@cmu.edu


co-design, especially in the design of brain–computer Interfa-

ces. Sriram received his Ph.D. degree in computer science

from Yale University. Contact him at mckarthik7@gmail.com.

GUIDO TAGLIAVINI is a software engineer at Snowflake,

San Mateo, CA, 99402, USA. His research interests include

the theory of hash tables and caching algorithms. Tagliavini

received his Ph.D. degree in computer science from Rutgers

University. Contact him at guido.tag@gmail.com.

EVAN WEST is a Ph.D. candidate at Stony Brook University,

Stony Brook, NY, 11794, USA. His research interests include

graph streaming, external memory algorithms, and data-

structures. West received his B.Sc. degree in computer sci-

ence from the University of California at Santa Cruz. Contact

him at evan.ts.west@gmail.com.

MICHAEL A. BENDER is the John L. Hennessy Chaired Pro-

fessor in Computer Science at Stony Brook University, Stony

Brook, NY, 11794, USA. His research interests include the the-

ory of data structures and their use in storage systems.

Bender received his Ph.D. degree in computer science from

Harvard University. He is a fellow of the European Associ-

ation for Theoretical Computer Science. Contact him at

https://www.cs.stonybrook.edu/(bender/ or bender@cs.

stonybrook.edu.

ABHISHEK BHATTACHARJEE is a professor of computer

science at Yale University, New Haven, CT, 06511, USA. His

research interests are at the hardware/software interface.

Bhattacharjee received his Ph.D. degree from Princeton

University. Contact him at abhishek.bhattacharjee@yale.edu.

ALEX CONWAY is an assistant professor at Cornell Tech,

New York, NY, 10044, USA. His research interests include

memory systems, storage systems, and randomized data

structures. Conway received his Ph.D. degree in computer

science from Rutgers University. Contact him at https://ajh

conway.com or me@ajhconway.com.

MARTÍN FARACH-COLTON is the Leonard J. Shustek Pro-

fessor of Computer Science at New York University, New

York, NY, 11201, USA. His research interests include the the-

ory of data structures and their use in storage systems.

Farach-Colton received his Ph.D. degree in computer science

from the University of Maryland. He is a Fellow of IEEE, the

Association for Computing Machinery, and the Society for

Industrial and Applied Mathematics. Contact him at martin@

farach-colton.com.

JAYNEEL GANDHI is an engineer at Meta, Menlo Park, CA,

94025, USA. His research interests include computer

architecture, operating systems, memory system design,

virtual memory, and virtualization. Gandhi received his Ph.D.

degree in computer science from the University of Wisconsin-

Madison. Contact him at jayneel@meta.com.

ROB JOHNSON is a distinguished engineer at VMware

Research, Palo Alto, CA, 94304, USA. His research interests

include data structures, storage systems, and file systems.

Johnson received his Ph.D. degree in computer science from

the University of California, Berkeley. He is a member of the

Association for Computing Machinery. Contact him at rob@

robjohnson.io.

SUDARSUN KANNAN is an assistant professor at Rutgers

University, Piscataway, NJ, 08854, USA. His research inter-

ests include operating systems, computer architecture, and

distributed systems. Kannan received his Ph.D. degree in

computer science from Georgia Tech. He is a member of the

Association for Computing Machinery. Contact him at

sudarsun.kannan@rutgers.edu.

DONALD E. PORTER is a professor at The University of

North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

His research interests include operating systems, security,

and architecture. Porter received his Ph.D. degree in com-

puter science from the University of Texas at Austin. He is a

Member of IEEE. Contact him at porter@cs.unc.edu.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

July/August 2024 IEEE Micro 59

mailto:mckarthik7@gmail.com
mailto:guido.tag@gmail.com
mailto:evan.ts.west@gmail.com
https://www.cs.stonybrook.edu/
bender/
mailto:bender@cs.stonybrook.edu
mailto:bender@cs.stonybrook.edu
mailto:abhishek.bhattacharjee@yale.edu
https://ajhconway.com
https://ajhconway.com
mailto:me@ajhconway.com
mailto:martin@farach-colton.com
mailto:martin@farach-colton.com
mailto:jayneel@meta.com
mailto:rob@robjohnson.io
mailto:rob@robjohnson.io
mailto:sudarsun.kannan@rutgers.edu
mailto:porter@cs.unc.edu

	01
	02
	03
	04
	05
	07
	09
	10
	11
	12
	13
	15
	16
	17
	19
	20
	21
	22
	23
	24
	25
	26
	27

